The Enzyme Database

Displaying entries 1-50 of 147.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.144     Relevance: 100%
Accepted name: perillyl-alcohol dehydrogenase
Reaction: perillyl alcohol + NAD+ = perillyl aldehyde + NADH + H+
For diagram of (-)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Other name(s): perillyl alcohol dehydrogenase
Systematic name: perillyl-alcohol:NAD+ oxidoreductase
Comments: Oxidizes a number of primary alcohols with the alcohol group allylic to an endocyclic double bond and a 6-membered ring, either aromatic or hydroaromatic.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-73-0
References:
1.  Ballal, N.R., Bhattacharyya, P.K. and Rangachari, P.N. Perillyl alcohol dehydrogenase from a soil pseudomonad. Biochem. Biophys. Res. Commun. 23 (1966) 473–478. [DOI] [PMID: 4289759]
[EC 1.1.1.144 created 1972]
 
 
EC 1.17.99.8     Relevance: 85.1%
Accepted name: limonene dehydrogenase
Reaction: (1) (S)-limonene + H2O + acceptor = (–)-perillyl alcohol + reduced acceptor
(2) (R)-limonene + H2O + acceptor = (+)-perillyl alcohol + reduced acceptor
Glossary: limonene = 1-methyl-4-(prop-1-en-2-yl)cyclohex-1-ene
perillyl alcohol = [4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol
(–)-perillyl alcohol = (S)-perillyl alcohol = [(4S)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol
(+)-perillyl alcohol = (R)-perillyl alcohol = [(4R)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol
(–)-limonene = (S)-limonene = (4S)-1-methyl-4-(prop-1-en-2-yl)cyclohexene
(+)-limonene = (R)-limonene = (4R)-1-methyl-4-(prop-1-en-2-yl)cyclohexene
Other name(s): ctmAB (gene names)
Systematic name: limonene:acceptor oxidoreductase (7-hydroxylating)
Comments: Contains FAD. The enzyme, characterized from the bacterium Castellaniella defragrans 65Phen, hydroxylates the R- and S-enantiomers at a similar rate. The in vivo electron acceptor may be a heterodimeric electron transfer flavoprotein (ETF).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Petasch, J., Disch, E.M., Markert, S., Becher, D., Schweder, T., Huttel, B., Reinhardt, R. and Harder, J. The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen. BMC Microbiol. 14:164 (2014). [PMID: 24952578]
2.  Puentes-Cala, E., Liebeke, M., Markert, S. and Harder, J. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans. J. Biol. Chem. 293 (2018) 9520–9529. [PMID: 29716998]
[EC 1.17.99.8 created 2020]
 
 
EC 1.14.13.49      
Transferred entry: (S)-limonene 7-monooxygenase. Now classified as EC 1.14.14.52, (S)-limonene 7-monooxygenase
[EC 1.14.13.49 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.47      
Transferred entry: (S)-limonene 3-monooxygenase. Now EC 1.14.14.99, (S)-limonene 3-monooxygenase
[EC 1.14.13.47 created 1992, modified 2003, deleted 2018]
 
 
EC 1.14.13.48      
Transferred entry: (S)-limonene 6-monooxygenase. Now classified as EC 1.14.14.51, (S)-limonene 6-monooxygenase
[EC 1.14.13.48 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.14.52     Relevance: 71.5%
Accepted name: (S)-limonene 7-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-perillyl alcohol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 7-monooxygenase; (–)-limonene hydroxylase; (–)-limonene monooxygenase; (–)-limonene,NADPH:oxygen oxidoreductase (7-hydroxylating)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (7-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme, characterized from the plant Perilla frutescens, participates in the biosynthesis of perillyl aldehyde, the major constituent of the essential oil that accumulates in the glandular trichomes of this plant. Some forms of the enzyme also catalyse the oxidation of (–)-perillyl alcohol to (–)-perillyl aldehyde.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 122653-75-2
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
2.  Mau, C.J., Karp, F., Ito, M., Honda, G. and Croteau, R.B. A candidate cDNA clone for (–)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry 71 (2010) 373–379. [DOI] [PMID: 20079506]
3.  Fujiwara, Y. and Ito, M. Molecular cloning and characterization of a Perilla frutescens cytochrome P450 enzyme that catalyzes the later steps of perillaldehyde biosynthesis. Phytochemistry 134 (2017) 26–37. [DOI] [PMID: 27890582]
[EC 1.14.14.52 created 1992 as EC 1.14.13.49, modified 2003, transferred 2017 to EC 1.14.14.52]
 
 
EC 5.3.3.11     Relevance: 48.5%
Accepted name: isopiperitenone Δ-isomerase
Reaction: isopiperitenone = piperitenone
For diagram of (–)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Systematic name: isopiperitenone Δ84-isomerase
Comments: Involved in the biosynthesis of menthol and related monoterpenes in peppermint (Mentha piperita) leaves.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 96595-07-2
References:
1.  Kjonaas, R.B., Venkatachalam, K.V. and Croteau, R. Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha piperita) leaves. Arch. Biochem. Biophys. 238 (1985) 49–60. [DOI] [PMID: 3885858]
[EC 5.3.3.11 created 1989]
 
 
EC 1.1.1.194     Relevance: 45.5%
Accepted name: coniferyl-alcohol dehydrogenase
Reaction: coniferyl alcohol + NADP+ = coniferyl aldehyde + NADPH + H+
Other name(s): CAD (ambiguous)
Systematic name: coniferyl-alcohol:NADP+ oxidoreductase
Comments: Specific for coniferyl alcohol; does not act on cinnamyl alcohol, 4-coumaryl alcohol or sinapyl alcohol.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37250-27-4
References:
1.  Mansell, R.L., Babbel, G.R. and Zenk, M.H. Multiple forms and specificity of coniferyl alcohol dehydrogenase from cambial regions of higher plants. Phytochemistry 15 (1976) 1849–1853.
2.  Wyrambik, D. and Grisebach, H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 59 (1975) 9–15. [DOI] [PMID: 1250]
[EC 1.1.1.194 created 1984]
 
 
EC 1.1.1.243     Relevance: 45.4%
Accepted name: carveol dehydrogenase
Reaction: (–)-trans-carveol + NADP+ = (–)-carvone + NADPH + H+
For diagram of (–)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Other name(s): (–)-trans-carveol dehydrogenase
Systematic name: (–)-trans-carveol:NADP+ oxidoreductase
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 122653-66-1
References:
1.  Gershenzon, J., Maffei, M. and Croteau, R. Biochemical and histochemical-localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol. 89 (1989) 1351–1357. [PMID: 16666709]
[EC 1.1.1.243 created 1992]
 
 
EC 1.1.1.195     Relevance: 44.9%
Accepted name: cinnamyl-alcohol dehydrogenase
Reaction: cinnamyl alcohol + NADP+ = cinnamaldehyde + NADPH + H+
Other name(s): cinnamyl alcohol dehydrogenase; CAD (ambiguous)
Systematic name: cinnamyl-alcohol:NADP+ oxidoreductase
Comments: Acts on coniferyl alcohol, sinapyl alcohol, 4-coumaryl alcohol and cinnamyl alcohol (cf. EC 1.1.1.194 coniferyl-alcohol dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55467-36-2
References:
1.  Sarni, F., Grand, C. and Baudet, A.M. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur. J. Biochem. 139 (1984) 259–265. [DOI] [PMID: 6365550]
2.  Wyrambik, D. and Grisebach, H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 59 (1975) 9–15. [DOI] [PMID: 1250]
3.  Wyrambik, D. and Grisebach, H. Enzymic synthesis of lignin precursors. Further studies on cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 97 (1979) 503–509. [DOI] [PMID: 572771]
[EC 1.1.1.195 created 1984]
 
 
EC 1.14.14.51     Relevance: 43.8%
Accepted name: (S)-limonene 6-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-trans-carveol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 6-hydroxylase; (–)-limonene 6-monooxygenase; (–)-limonene,NADPH:oxygen oxidoreductase (6-hydroxylating)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme participates in the biosynthesis of (–)-carvone, which is responsible for the aroma of spearmint.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 138066-93-0
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
[EC 1.14.14.51 created 1992 as EC 1.14.13.48, modified 2003, transferred 2017 to EC 1.14.14.51]
 
 
EC 4.2.3.16     Relevance: 43.6%
Accepted name: (4S)-limonene synthase
Reaction: geranyl diphosphate = (S)-limonene + diphosphate
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene = a monoterpenoid
(S)-limonene = (-)-limonene
Other name(s): (-)-(4S)-limonene synthase; 4S-(-)-limonene synthase; geranyldiphosphate diphosphate lyase (limonene forming); geranyldiphosphate diphosphate lyase [cyclizing, (4S)-limonene-forming]; geranyl-diphosphate diphosphate-lyase [cyclizing; (-)-(4S)-limonene-forming]
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing; (S)-limonene-forming]
Comments: A recombinant enzyme (also known as a monoterpene synthase or cyclase) from the grand fir (Abies grandis) requires Mn2+ and K+ for activity. Mg2+ is essentially ineffective as the divalent metal ion cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110639-20-8
References:
1.  Bohlmann, J., Steele, C.L. and Croteau, R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J. Biol. Chem. 272 (1997) 21784–21792. [DOI] [PMID: 9268308]
2.  Collby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J. and Croteau, R. 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J. Biol. Chem. 268 (1993) 23016–23024. [PMID: 8226816]
3.  Yuba, A., Yazaki, K., Tabata, M., Honda, G. and Croteau, R. cDNA cloning, characterization, and functional expression of 4S-(-)-limonene synthase from Perilla frutescens. Arch. Biochem. Biophys. 332 (1996) 280–287. [DOI] [PMID: 8806736]
[EC 4.2.3.16 created 2000 as EC 4.1.99.10, transferred 2000 to EC 4.2.3.16, modified 2003]
 
 
EC 1.1.3.7     Relevance: 42.5%
Accepted name: aryl-alcohol oxidase
Reaction: an aromatic primary alcohol + O2 = an aromatic aldehyde + H2O2
Other name(s): aryl alcohol oxidase; veratryl alcohol oxidase; arom. alcohol oxidase
Systematic name: aryl-alcohol:oxygen oxidoreductase
Comments: Oxidizes many primary alcohols containing an aromatic ring; best substrates are (2-naphthyl)methanol and 3-methoxybenzyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-77-7
References:
1.  Farmer, V.C., Henderson, M.E.K. and Russell, J.D. Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem. J. 74 (1960) 257–262. [PMID: 13821599]
[EC 1.1.3.7 created 1965]
 
 
EC 1.1.1.347     Relevance: 41.5%
Accepted name: geraniol dehydrogenase (NAD+)
Reaction: geraniol + NAD+ = geranial + NADH + H+
Other name(s): GeDH; geoA (gene name)
Systematic name: geraniol:NAD+ oxidoreductase
Comments: The enzyme from the bacterium Castellaniella defragrans is most active in vitro with perillyl alcohol [2]. The enzyme from the prune mite Carpoglyphus lactis also acts (more slowly) on farnesol but not on nerol [1].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Noge, K., Kato, M., Mori, N., Kataoka, M., Tanaka, C., Yamasue, Y., Nishida, R. and Kuwahara, Y. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae). FEBS J. 275 (2008) 2807–2817. [DOI] [PMID: 18422649]
2.  Lüddeke, F., Wülfing, A., Timke, M., Germer, F., Weber, J., Dikfidan, A., Rahnfeld, T., Linder, D., Meyerdierks, A. and Harder, J. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl. Environ. Microbiol. 78 (2012) 2128–2136. [DOI] [PMID: 22286981]
[EC 1.1.1.347 created 2013]
 
 
EC 1.14.13.104      
Transferred entry: (+)-menthofuran synthase. Now EC 1.14.14.143, (+)-menthofuran synthase
[EC 1.14.13.104 created 2008, deleted 2018]
 
 
EC 1.1.1.1     Relevance: 40.9%
Accepted name: alcohol dehydrogenase
Reaction: (1) a primary alcohol + NAD+ = an aldehyde + NADH + H+
(2) a secondary alcohol + NAD+ = a ketone + NADH + H+
For diagram of mevalonate biosynthesis, click here
Other name(s): aldehyde reductase; ADH; alcohol dehydrogenase (NAD); aliphatic alcohol dehydrogenase; ethanol dehydrogenase; NAD-dependent alcohol dehydrogenase; NAD-specific aromatic alcohol dehydrogenase; NADH-alcohol dehydrogenase; NADH-aldehyde dehydrogenase; primary alcohol dehydrogenase; yeast alcohol dehydrogenase
Systematic name: alcohol:NAD+ oxidoreductase
Comments: A zinc protein. Acts on primary or secondary alcohols or hemi-acetals with very broad specificity; however the enzyme oxidizes methanol much more poorly than ethanol. The animal, but not the yeast, enzyme acts also on cyclic secondary alcohols.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9031-72-5
References:
1.  Brändén, G.-I., Jörnvall, H., Eklund, H. and Furugren, B. Alcohol dehydrogenase. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 11, Academic Press, New York, 1975, pp. 103–190.
2.  Jörnvall, H. Differences between alcohol dehydrogenases. Structural properties and evolutionary aspects. Eur. J. Biochem. 72 (1977) 443–452. [DOI] [PMID: 320001]
3.  Negelein, E. and Wulff, H.-J. Diphosphopyridinproteid, Alkohol, Acetaldehyd. Biochem. Z. 293 (1937) 351–389.
4.  Sund, H. and Theorell, H. Alcohol dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 25–83.
5.  Theorell, H. Kinetics and equilibria in the liver alcohol dehydrogenase system. Adv. Enzymol. Relat. Subj. Biochem. 20 (1958) 31–49. [PMID: 13605979]
[EC 1.1.1.1 created 1961, modified 2011]
 
 
EC 1.1.1.90     Relevance: 40.8%
Accepted name: aryl-alcohol dehydrogenase
Reaction: an aromatic alcohol + NAD+ = an aromatic aldehyde + NADH + H+
Other name(s): p-hydroxybenzyl alcohol dehydrogenase; benzyl alcohol dehydrogenase; coniferyl alcohol dehydrogenase
Systematic name: aryl-alcohol:NAD+ oxidoreductase
Comments: A group of enzymes with broad specificity towards primary alcohols with an aromatic or cyclohex-1-ene ring, but with low or no activity towards short-chain aliphatic alcohols.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37250-26-3
References:
1.  Suhara, K., Takemori, S. and Katagiri, M. The purification and properties of benzylalcohol dehydrogenase from Pseudomonas sp. Arch. Biochem. Biophys. 130 (1969) 422–429. [DOI] [PMID: 5778658]
2.  Yamanaka, K. and Minoshima, R. Identification and characterization of a nicotinamide adenine dinucleotide-dependent para-hydroxybenzyl alcohol-dehydrogenase from Rhodopseudomonas acidophila M402. Agric. Biol. Chem. 48 (1984) 1161–1171.
[EC 1.1.1.90 created 1972, modified 1989]
 
 
EC 1.1.3.30     Relevance: 40.1%
Accepted name: polyvinyl-alcohol oxidase
Reaction: polyvinyl alcohol + O2 = oxidized polyvinyl alcohol + H2O2
Other name(s): dehydrogenase, polyvinyl alcohol; PVA oxidase
Systematic name: polyvinyl-alcohol:oxygen oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119940-13-5
References:
1.  Shimao, M., Nishimura, Y., Kato, N. and Sakazawa, C. Localization of polyvinyl alcohol oxidase produced by a bacterial symbiont Pseudomonas sp strain VM 15C. Appl. Environ. Microbiol. 49 (1985) 8–10. [PMID: 16346711]
2.  Shimao, M., Onishi, S., Kato, N. and Sakazawa, C. Pyrroloquinoline quinone-dependent cytochrome reduction in polyvinyl alcohol-degrading Pseudomonas sp strain VM15C. Appl. Environ. Microbiol. 55 (1989) 275–278. [PMID: 16347841]
[EC 1.1.3.30 created 1992]
 
 
EC 1.1.2.6     Relevance: 39.9%
Accepted name: polyvinyl alcohol dehydrogenase (cytochrome)
Reaction: polyvinyl alcohol + ferricytochrome c = oxidized polyvinyl alcohol + ferrocytochrome c + H+
Other name(s): PVA dehydrogenase; PVADH
Systematic name: polyvinyl alcohol:ferricytochrome-c oxidoreductase
Comments: A quinoprotein. The enzyme is involved in bacterial polyvinyl alcohol degradation. Some Gram-negative bacteria degrade polyvinyl alcohol by importing it into the periplasmic space, where it is oxidized by polyvinyl alcohol dehydrogenase, an enzyme that is coupled to the respiratory chain via cytochrome c. The enzyme contains a pyrroloquinoline quinone cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shimao, M., Ninomiya, K., Kuno, O., Kato, N. and Sakazawa, C. Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl. Environ. Microbiol. 51 (1986) 268. [PMID: 3513704]
2.  Shimao, M., Onishi, S., Kato, N. and Sakazawa, C. Pyrroloquinoline quinone-dependent cytochrome reduction in polyvinyl alcohol-degrading Pseudomonas sp strain VM15C. Appl. Environ. Microbiol. 55 (1989) 275–278. [PMID: 16347841]
3.  Mamoto, R., Hu, X., Chiue, H., Fujioka, Y. and Kawai, F. Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3. J. Biosci. Bioeng. 105 (2008) 147–151. [DOI] [PMID: 18343342]
4.  Hirota-Mamoto, R., Nagai, R., Tachibana, S., Yasuda, M., Tani, A., Kimbara, K. and Kawai, F. Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152 (2006) 1941–1949. [DOI] [PMID: 16804170]
5.  Hu, X., Mamoto, R., Fujioka, Y., Tani, A., Kimbara, K. and Kawai, F. The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl. Microbiol. Biotechnol. 78 (2008) 685–693. [DOI] [PMID: 18214469]
6.  Kawai, F. and Hu, X. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84 (2009) 227–237. [DOI] [PMID: 19590867]
[EC 1.1.2.6 created 1989 as EC 1.1.99.23, transferred 2010 to EC 1.1.2.6]
 
 
EC 1.1.99.8      
Transferred entry: alcohol dehydrogenase (acceptor). Now EC 1.1.2.7, methanol dehydrogenase (cytochrome c) and EC 1.1.2.8, alcohol dehydrogenase (cytochrome c).
[EC 1.1.99.8 created 1972, modified 1982, deleted 2010]
 
 
EC 2.4.1.111     Relevance: 39.2%
Accepted name: coniferyl-alcohol glucosyltransferase
Reaction: UDP-glucose + coniferyl alcohol = UDP + coniferin
Other name(s): uridine diphosphoglucose-coniferyl alcohol glucosyltransferase; UDP-glucose coniferyl alcohol glucosyltransferase
Systematic name: UDP-glucose:coniferyl-alcohol 4′-β-D-glucosyltransferase
Comments: Sinapyl alcohol can also act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 61116-23-2
References:
1.  Ibrahim, R.K. and Grisebach, H. Purification and properties of UDP-glucose: coniferyl alcohol glucosyltransferase from suspension cultures of Paul's scarlet rose. Arch. Biochem. Biophys. 176 (1976) 700–708. [DOI] [PMID: 10853]
[EC 2.4.1.111 created 1984]
 
 
EC 1.1.1.91     Relevance: 38.8%
Accepted name: aryl-alcohol dehydrogenase (NADP+)
Reaction: an aromatic alcohol + NADP+ = an aromatic aldehyde + NADPH + H+
Other name(s): aryl alcohol dehydrogenase (nicotinamide adenine dinucleotide phosphate); coniferyl alcohol dehydrogenase; NADPH-linked benzaldehyde reductase; aryl-alcohol dehydrogenase (NADP)
Systematic name: aryl-alcohol:NADP+ oxidoreductase
Comments: Also acts on some aliphatic aldehydes, but cinnamaldehyde was the best substrate found.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-27-4
References:
1.  Gross, G.G. and Zenk, M.H. Reduktionaromatische Säuren zu Aldehyden und Alkoholen im zellfreien System. 2. Reinigung und Eigenschaften von Aryl Alkohol:NADP-Oxidoreductase aus Neurospora crassa. Eur. J. Biochem. 8 (1969) 420–425. [DOI] [PMID: 4389864]
[EC 1.1.1.91 created 1972]
 
 
EC 1.1.3.38     Relevance: 38.8%
Accepted name: vanillyl-alcohol oxidase
Reaction: vanillyl alcohol + O2 = vanillin + H2O2
Other name(s): 4-hydroxy-2-methoxybenzyl alcohol oxidase
Systematic name: vanillyl alcohol:oxygen oxidoreductase
Comments: Vanillyl-alcohol oxidase from Penicillium simplicissimum contains covalently bound FAD. It converts a wide range of 4-hydroxybenzyl alcohols and 4-hydroxybenzylamines into the corresponding aldehydes. The allyl group of 4-allylphenols is also converted into the -CH=CH-CH2OH group.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 143929-24-2
References:
1.  de Jong, E., van Berkel, W.J.H., van der Zwan, R.P. and de Bont, J.A.M. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum, a novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208 (1992) 651–657. [DOI] [PMID: 1396672]
2.  Fraaije, M.W., Veeger, C. and van Berkel, W.J.H. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols. Eur. J. Biochem. 234 (1995) 271–277. [DOI] [PMID: 8529652]
[EC 1.1.3.38 created 1999]
 
 
EC 1.1.99.23      
Transferred entry: polyvinyl-alcohol dehydrogenase (acceptor). Now EC 1.1.2.6, polyvinyl alcohol dehydrogenase (cytochrome)
[EC 1.1.99.23 created 1989, deleted 2010]
 
 
EC 1.1.3.18     Relevance: 38.3%
Accepted name: secondary-alcohol oxidase
Reaction: a secondary alcohol + O2 = a ketone + H2O2
Other name(s): polyvinyl alcohol oxidase; secondary alcohol oxidase
Systematic name: secondary-alcohol:oxygen oxidoreductase
Comments: Acts on secondary alcohols with five or more carbons, and polyvinyl alcohols with molecular mass over 300 Da. The Pseudomonas enzyme contains one atom of non-heme iron per molecule.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71245-08-4
References:
1.  Morita, M., Hamada, N., Sakai, K. and Watanabe, Y. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas. Agric. Biol. Chem. 43 (1979) 1225–1235.
2.  Sakai, K., Hamada, N. and Watanabe, Y. Separation of secondary alcohol oxidase and oxidized poly(vinyl alcohol) hydrolase by hydrophobic and dye-ligand chromatographies. Agric. Biol. Chem. 47 (1983) 153–155.
3.  Suzuki, T. Purification and some properties of polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric. Biol. Chem. 40 (1976) 497–504.
4.  Suzuki, T. Oxidation of secondary alcohols by polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric. Biol. Chem. 42 (1977) 1187–1194.
[EC 1.1.3.18 created 1981]
 
 
EC 1.14.19.48     Relevance: 38.3%
Accepted name: tert-amyl alcohol desaturase
Reaction: tert-amyl alcohol + NADPH + H+ + O2 = isoprenyl alcohol + NADP+ + 2 H2O
Glossary: isoprenyl alcohol = 3-methylbut-1-en-3-ol
tert-amyl alcohol = 2-methylbutan-2-ol
Other name(s): mdpJK (gene names)
Systematic name: tert-amyl alcohol,NADPH:oxygen oxidoreductase (1,2-dehydrogenating)
Comments: The enzyme, characterized from the bacterium Aquincola tertiaricarbonis, is a Rieske nonheme mononuclear iron oxygenase. It can also act, with lower efficiency, on butan-2-ol, converting it to but-1-en-3-ol. Depending on the substrate, the enzyme also catalyses EC 1.14.13.229, tert-butanol monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schafer, F., Schuster, J., Wurz, B., Hartig, C., Harms, H., Muller, R.H. and Rohwerder, T. Synthesis of short-chain diols and unsaturated alcohols from secondary alcohol substrates by the Rieske nonheme mononuclear iron oxygenase MdpJ. Appl. Environ. Microbiol. 78 (2012) 6280–6284. [DOI] [PMID: 22752178]
2.  Schuster, J., Schafer, F., Hubler, N., Brandt, A., Rosell, M., Hartig, C., Harms, H., Muller, R.H. and Rohwerder, T. Bacterial degradation of tert-amyl alcohol proceeds via hemiterpene 2-methyl-3-buten-2-ol by employing the tertiary alcohol desaturase function of the Rieske nonheme mononuclear iron oxygenase MdpJ. J. Bacteriol. 194 (2012) 972–981. [DOI] [PMID: 22194447]
[EC 1.14.19.48 created 2016]
 
 
EC 2.3.1.84     Relevance: 38.2%
Accepted name: alcohol O-acetyltransferase
Reaction: acetyl-CoA + an alcohol = CoA + an acetyl ester
Other name(s): alcohol acetyltransferase
Systematic name: acetyl-CoA:alcohol O-acetyltransferase
Comments: Acts on a range of short-chain aliphatic alcohols, including methanol and ethanol
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 80237-89-4
References:
1.  Yoshioka, K. and Hashimoto, N. Ester formation by alcohol acetyltransferase from brewers' yeast. Agric. Biol. Chem. 45 (1981) 2183–2190.
[EC 2.3.1.84 created 1984]
 
 
EC 2.7.1.66     Relevance: 37.3%
Accepted name: undecaprenol kinase
Reaction: ATP + undecaprenol = ADP + undecaprenyl phosphate
Other name(s): isoprenoid alcohol kinase; isoprenoid alcohol phosphokinase; C55-isoprenoid alcohol phosphokinase; isoprenoid alcohol kinase (phosphorylating); C55-isoprenoid alcohol kinase; C55-isoprenyl alcohol phosphokinase; polyisoprenol kinase
Systematic name: ATP:undecaprenol phosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9068-22-8
References:
1.  Higashi, Y., Siewert, G. and Strominger, J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. XIX. Isoprenoid alcohol phosphokinase. J. Biol. Chem. 245 (1970) 3683–3690. [PMID: 4248528]
[EC 2.7.1.66 created 1972]
 
 
EC 2.4.1.172     Relevance: 36.5%
Accepted name: salicyl-alcohol β-D-glucosyltransferase
Reaction: UDP-glucose + salicyl alcohol = UDP + salicin
Other name(s): uridine diphosphoglucose-salicyl alcohol 2-glucosyltransferase; UDPglucose:salicyl alcohol phenyl-glucosyltransferase
Systematic name: UDP-glucose:salicyl-alcohol β-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 89400-32-8
References:
1.  Mizukami, H., Terao, T. and Ohashi, H. Partial-purification and characterization of UDP-glucose-salicyl alcohol glucosyltransferase from Gardeni jasminoides cell-cultures. Planta Med. 1985 (1985) 104–107.
[EC 2.4.1.172 created 1989]
 
 
EC 1.1.1.192     Relevance: 36.4%
Accepted name: long-chain-alcohol dehydrogenase
Reaction: a long-chain alcohol + 2 NAD+ + H2O = a long-chain carboxylate + 2 NADH + 2 H+
Other name(s): long-chain alcohol dehydrogenase; fatty alcohol oxidoreductase
Systematic name: long-chain-alcohol:NAD+ oxidoreductase
Comments: Hexadecanol is a good substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 76774-36-2
References:
1.  Lee, T.-C. Characterization of fatty alcohol:NAD+ oxidoreductase from rat liver. J. Biol. Chem. 254 (1979) 2892–2896. [PMID: 34610]
[EC 1.1.1.192 created 1984]
 
 
EC 1.1.3.20     Relevance: 36.1%
Accepted name: long-chain-alcohol oxidase
Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase
Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129430-50-8
References:
1.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [DOI] [PMID: 36040]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
3.  Cheng, Q., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett. 574 (2004) 62–68. [DOI] [PMID: 15358540]
4.  Zhao, S., Lin, Z., Ma, W., Luo, D. and Cheng, Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Prog. 24 (2008) 773–779. [DOI] [PMID: 18396913]
5.  Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim. Biophys. Acta 1735 (2005) 192–203. [DOI] [PMID: 16046182]
[EC 1.1.3.20 created 1984, modified 2010]
 
 
EC 1.1.1.97     Relevance: 36%
Accepted name: 3-hydroxybenzyl-alcohol dehydrogenase
Reaction: 3-hydroxybenzyl alcohol + NADP+ = 3-hydroxybenzaldehyde + NADPH + H+
Other name(s): m-hydroxybenzyl alcohol dehydrogenase; m-hydroxybenzyl alcohol (NADP) dehydrogenase; m-hydroxybenzylalcohol dehydrogenase
Systematic name: 3-hydroxybenzyl-alcohol:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-73-4
References:
1.  Forrester, P.I. and Gaucher, G.M. m-Hydroxybenzyl alcohol dehydrogenase from Penicillium urticae. Biochemistry 11 (1972) 1108–1114. [PMID: 4335290]
[EC 1.1.1.97 created 1972]
 
 
EC 1.1.1.54     Relevance: 34.8%
Accepted name: allyl-alcohol dehydrogenase
Reaction: allyl alcohol + NADP+ = acrolein + NADPH + H+
Systematic name: allyl-alcohol:NADP+ oxidoreductase
Comments: Also acts on saturated primary alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-58-4
References:
1.  Otsuka, K. Triphosphopyridine nucleotide-allyl and -ethyl alcohol dehydrogenases from Escherichia coli. J. Gen. Appl. Microbiol. 4 (1958) 211–215.
[EC 1.1.1.54 created 1965]
 
 
EC 1.14.14.99     Relevance: 34.5%
Accepted name: (S)-limonene 3-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-trans-isopiperitenol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 3-hydroxylase; (–)-limonene 3-monooxygenase; CYP71D15 (gene name)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from peppermint (Mentha piperita).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 138066-92-9
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
2.  Lupien, S., Karp, F., Wildung, M. and Croteau, R. Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (–)-4S-limonene-3-hydroxylase and (–)-4S-limonene-6-hydroxylase. Arch. Biochem. Biophys. 368 (1999) 181–192. [PMID: 10415126]
3.  Wust, M., Little, D.B., Schalk, M. and Croteau, R. Hydroxylation of limonene enantiomers and analogs by recombinant (–)-limonene 3- and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites. Arch. Biochem. Biophys. 387 (2001) 125–136. [PMID: 11368174]
[EC 1.14.14.99 created 1992 as EC 1.14.13.47, modified 2003, transferred 2018 1.14.14.99]
 
 
EC 1.1.1.71     Relevance: 34.5%
Accepted name: alcohol dehydrogenase [NAD(P)+]
Reaction: an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+
For diagram of retinal and derivatives biosynthesis, click here
Other name(s): retinal reductase (ambiguous); aldehyde reductase (NADPH/NADH); alcohol dehydrogenase [NAD(P)]
Systematic name: alcohol:NAD(P)+ oxidoreductase
Comments: Reduces aliphatic aldehydes of carbon chain length from 2 to 14, with greatest activity on C4, C6 and C8 aldehydes; also reduces retinal to retinol.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-10-5
References:
1.  Fidge, N.H. and Goodman, D.S. The enzymatic reduction of retinal to retinol in rat intestine. J. Biol. Chem. 243 (1968) 4372–4379. [PMID: 4300551]
[EC 1.1.1.71 created 1972]
 
 
EC 1.1.5.7     Relevance: 33.8%
Accepted name: cyclic alcohol dehydrogenase (quinone)
Reaction: a cyclic alcohol + a quinone = a cyclic ketone + a quinol
Other name(s): cyclic alcohol dehydrogenase; MCAD
Systematic name: cyclic alcohol:quinone oxidoreductase
Comments: This enzyme oxidizes a wide variety of cyclic alcohols. Some minor enzyme activity is found with aliphatic secondary alcohols and sugar alcohols, but not primary alcohols. The enzyme is unable to catalyse the reverse reaction of cyclic ketones or aldehydes to cyclic alcohols. This enzyme differs from EC 1.1.5.5, alcohol dehydrogenase (quinone), which shows activity with ethanol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Moonmangmee, D., Fujii, Y., Toyama, H., Theeragool, G., Lotong, N., Matsushita, K. and Adachi, O. Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9. Biosci. Biotechnol. Biochem. 65 (2001) 2763–2772. [PMID: 11826975]
[EC 1.1.5.7 created 2010]
 
 
EC 1.1.98.5     Relevance: 33.4%
Accepted name: secondary-alcohol dehydrogenase (coenzyme-F420)
Reaction: R-CHOH-R′ + oxidized coenzyme F420 = R-CO-R′ + reduced coenzyme F420
Glossary: oxidized coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): F420-dependent alcohol dehydrogenase; secondary alcohol:F420 oxidoreductase; F420-dependent secondary alcohol dehydrogenase
Systematic name: secondary-alcohol:coenzyme F420 oxidoreductase
Comments: The enzyme isolated from the methanogenic archaea Methanogenium liminatans catalyses the reversible oxidation of various secondary and cyclic alcohols to the corresponding ketones.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bleicher, K. and Winter, J. Purification and properties of F420- and NADP+-dependent alcohol dehydrogenases of Methanogenium liminatans and Methanobacterium palustre, specific for secondary alcohols. Eur. J. Biochem. 200 (1991) 43–51. [DOI] [PMID: 1879431]
2.  Aufhammer, S.W., Warkentin, E., Berk, H., Shima, S., Thauer, R.K. and Ermler, U. Coenzyme binding in F420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 12 (2004) 361–370. [DOI] [PMID: 15016352]
[EC 1.1.98.5 created 2013]
 
 
EC 1.1.9.1     Relevance: 33.3%
Accepted name: alcohol dehydrogenase (azurin)
Reaction: a primary alcohol + azurin = an aldehyde + reduced azurin
Other name(s): type II quinoprotein alcohol dehydrogenase; quinohaemoprotein ethanol dehydrogenase; QHEDH; ADHIIB
Systematic name: alcohol:azurin oxidoreductase
Comments: A soluble, periplasmic PQQ-containing quinohemoprotein. Also contains a single heme c. Occurs in Comamonas and Pseudomonas. Does not require an amine activator. Oxidizes a wide range of primary and secondary alcohols, and also aldehydes and large substrates such as sterols; methanol is not a substrate. Usually assayed with phenazine methosulfate or ferricyanide. Like all other quinoprotein alcohol dehydrogenases it has an 8-bladed ‘propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Groen, B.W., van Kleef, M.A. and Duine, J.A. Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochem. J. 234 (1986) 611–615. [PMID: 3521592]
2.  de Jong, G.A., Caldeira, J., Sun, J., Jongejan, J.A., de Vries, S., Loehr, T.M., Moura, I., Moura, J.J. and Duine, J.A. Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni. Biochemistry 34 (1995) 9451–9458. [PMID: 7626615]
3.  Toyama, H., Fujii, A., Matsushita, K., Shinagawa, E., Ameyama, M. and Adachi, O. Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriol. 177 (1995) 2442–2450. [DOI] [PMID: 7730276]
4.  Matsushita, K., Yamashita, T., Aoki, N., Toyama, H. and Adachi, O. Electron transfer from quinohemoprotein alcohol dehydrogenase to blue copper protein azurin in the alcohol oxidase respiratory chain of Pseudomonas putida HK5. Biochemistry 38 (1999) 6111–6118. [DOI] [PMID: 10320337]
5.  Chen, Z.W., Matsushita, K., Yamashita, T., Fujii, T.A., Toyama, H., Adachi, O., Bellamy, H.D. and Mathews, F.S. Structure at 1.9 Å resolution of a quinohemoprotein alcohol dehydrogenase from Pseudomonas putida HK5. Structure 10 (2002) 837–849. [DOI] [PMID: 12057198]
6.  Oubrie, A., Rozeboom, H.J., Kalk, K.H., Huizinga, E.G. and Dijkstra, B.W. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer. J. Biol. Chem. 277 (2002) 3727–3732. [DOI] [PMID: 11714714]
[EC 1.1.9.1 created 2010 as EC 1.1.98.1; transferred 2011 to EC 1.1.9.1]
 
 
EC 1.1.98.1      
Transferred entry: Now EC 1.1.9.1, alcohol dehydrogenase (azurin)
[EC 1.1.98.1 created 2010, deleted 2011]
 
 
EC 1.14.13.229     Relevance: 32.7%
Accepted name: tert-butyl alcohol monooxygenase
Reaction: tert-butyl alcohol + NADPH + H+ + O2 = 2-methylpropane-1,2-diol + NADP+ + H2O
Other name(s): mdpJK (gene names); tert-butanol monooxygenase
Systematic name: tert-butyl alcohol,NADPH:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Aquincola tertiaricarbonis, is a Rieske nonheme mononuclear iron oxygenase. It can also act, with lower efficiency, on propan-2-ol, converting it to propane-1,2-diol. Depending on the substrate, the enzyme also catalyses EC 1.14.19.48, tert-amyl alcohol desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schafer, F., Breuer, U., Benndorf, D., von Bergen, M., Harms, H. and Muller, R.H. Growth of Aquincola tertiaricarbonis L108 on tert-butyl alcohol leads to the induction of a phthalate dioxygenase-related protein and its associated oxidoreductase subunit. Eng. Life Sci. 7 (2007) 512–519.
2.  Schuster, J., Schafer, F., Hubler, N., Brandt, A., Rosell, M., Hartig, C., Harms, H., Muller, R.H. and Rohwerder, T. Bacterial degradation of tert-amyl alcohol proceeds via hemiterpene 2-methyl-3-buten-2-ol by employing the tertiary alcohol desaturase function of the Rieske nonheme mononuclear iron oxygenase MdpJ. J. Bacteriol. 194 (2012) 972–981. [DOI] [PMID: 22194447]
[EC 1.14.13.229 created 2016]
 
 
EC 2.3.1.196     Relevance: 32.2%
Accepted name: benzyl alcohol O-benzoyltransferase
Reaction: benzoyl-CoA + benzyl alcohol = CoA + benzyl benzoate
Glossary: benzyl benzoate = benzoic acid benzyl ester
Other name(s): benzoyl-CoA:benzyl alcohol benzoyltransferase; benzoyl-CoA:benzyl alcohol/phenylethanol benzoyltransferase; benzoyl-coenzyme A:benzyl alcohol benzoyltransferase; benzoyl-coenzyme A:phenylethanol benzoyltransferase
Systematic name: benzoyl-CoA:benzyl alcohol O-benzoyltransferase
Comments: The enzyme is involved in volatile benzenoid and benzoic acid biosynthesis. The enzyme from Petunia hybrida also catalyses the formation of 2-phenylethyl benzoate from benzoyl-CoA and 2-phenylethanol. The apparent catalytic efficiency of the enzyme from Petunia hybrida with benzoyl-CoA is almost 6-fold higher than with acetyl-CoA [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Boatright, J., Negre, F., Chen, X., Kish, C.M., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. Understanding in vivo benzenoid metabolism in Petunia petal tissue. Plant Physiol. 135 (2004) 1993–2011. [DOI] [PMID: 15286288]
2.  D'Auria, J.C., Chen, F. and Pichersky, E. Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130 (2002) 466–476. [DOI] [PMID: 12226525]
[EC 2.3.1.196 created 2011]
 
 
EC 1.1.1.2     Relevance: 31.9%
Accepted name: alcohol dehydrogenase (NADP+)
Reaction: an alcohol + NADP+ = an aldehyde + NADPH + H+
For diagram of mevalonate biosynthesis, click here
Other name(s): aldehyde reductase (NADPH2); NADP-alcohol dehydrogenase; NADP+-aldehyde reductase; NADP+-dependent aldehyde reductase; NADPH-aldehyde reductase; NADPH-dependent aldehyde reductase; nonspecific succinic semialdehyde reductase; ALR 1; low-Km aldehyde reductase; high-Km aldehyde reductase; alcohol dehydrogenase (NADP)
Systematic name: alcohol:NADP+ oxidoreductase
Comments: A zinc protein. Some members of this group oxidize only primary alcohols; others act also on secondary alcohols. May be identical with EC 1.1.1.19 (L-glucuronate reductase), EC 1.1.1.33 [mevaldate reductase (NADPH)] and EC 1.1.1.55 [lactaldehyde reductase (NADPH)]. Re-specific with respect to NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-12-0
References:
1.  Bosron, W.F. and Prairie, R.L. Triphosphopyridine nucleotide-linked aldehyde reductase. I. Purification and properties of the enzyme from pig kidney cortex. J. Biol. Chem. 247 (1972) 4480–4485. [PMID: 4402936]
2.  DeMoss, R. Triphosphopyridine nucleotide-specific ethanol dehydrogenase from Leuconostoc mesenteroides. Bacteriol. Proc. (1953) 81.
3.  Reeves, R.E., Montalvo, F.E. and Lushbaugh, T.S. Nicotinamide-adenine dinucleotide phosphate-dependent alcohol dehydrogenase. Enzyme from Entamoeba histolytica and some enzyme inhibitors. Int. J. Biochem. 2 (1971) 55–64.
4.  Tabakoff, B. and Erwin, V.G. Purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from brain. J. Biol. Chem. 245 (1970) 3263–3268. [PMID: 4393513]
[EC 1.1.1.2 created 1961]
 
 
EC 1.1.2.7     Relevance: 31.8%
Accepted name: methanol dehydrogenase (cytochrome c)
Reaction: a primary alcohol + 2 ferricytochrome cL = an aldehyde + 2 ferrocytochrome cL + 2 H+
Other name(s): methanol dehydrogenase; MDH (ambiguous)
Systematic name: methanol:cytochrome c oxidoreductase
Comments: A periplasmic quinoprotein alcohol dehydrogenase that only occurs in methylotrophic bacteria. It uses the novel specific cytochrome cL as acceptor. Acts on a wide range of primary alcohols, including ethanol, duodecanol, chloroethanol, cinnamyl alcohol, and also formaldehyde. Activity is stimulated by ammonia or methylamine. It is usually assayed with phenazine methosulfate. Like all other quinoprotein alcohol dehydrogenases it has an 8-bladed ’propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ. It differs from EC 1.1.2.8, alcohol dehydrogenase (cytochrome c), in having a high affinity for methanol and in having a second essential small subunit (no known function).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-43-9
References:
1.  Anthony, C. and Zatman, L.J. The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem. J. 92 (1964) 614–621. [PMID: 4378696]
2.  Anthony, C. and Zatman, L.J. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem. J. 104 (1967) 960–969. [PMID: 6049934]
3.  Duine, J.A., Frank, J. and Verweil, P.E.J. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur. J. Biochem. 108 (1980) 187–192. [DOI] [PMID: 6250827]
4.  Salisbury, S.A., Forrest, H.S., Cruse, W.B.T. and Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature (Lond.) 280 (1979) 843–844. [PMID: 471057]
5.  Cox, J.M., Day, D.J. and Anthony, C. The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL in methylotrophic bacteria. Biochim. Biophys. Acta 1119 (1992) 97–106. [DOI] [PMID: 1311606]
6.  Blake, C.C., Ghosh, M., Harlos, K., Avezoux, A. and Anthony, C. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat. Struct. Biol. 1 (1994) 102–105. [PMID: 7656012]
7.  Xia, Z.X., He, Y.N., Dai, W.W., White, S.A., Boyd, G.D. and Mathews, F.S. Detailed active site configuration of a new crystal form of methanol dehydrogenase from Methylophilus W3A1 at 1.9 Å resolution. Biochemistry 38 (1999) 1214–1220. [DOI] [PMID: 9930981]
8.  Afolabi, P.R., Mohammed, F., Amaratunga, K., Majekodunmi, O., Dales, S.L., Gill, R., Thompson, D., Cooper, J.B., Wood, S.P., Goodwin, P.M. and Anthony, C. Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome cL. Biochemistry 40 (2001) 9799–9809. [DOI] [PMID: 11502173]
9.  Anthony, C. and Williams, P. The structure and mechanism of methanol dehydrogenase. Biochim. Biophys. Acta 1647 (2003) 18–23. [DOI] [PMID: 12686102]
10.  Williams, P.A., Coates, L., Mohammed, F., Gill, R., Erskine, P.T., Coker, A., Wood, S.P., Anthony, C. and Cooper, J.B. The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr. D Biol. Crystallogr. 61 (2005) 75–79. [DOI] [PMID: 15608378]
[EC 1.1.2.7 created 1972 as EC 1.1.99.8, modified 1982, part transferred 2010 to EC 1.1.2.7]
 
 
EC 1.1.3.13     Relevance: 31.8%
Accepted name: alcohol oxidase
Reaction: a primary alcohol + O2 = an aldehyde + H2O2
Other name(s): ethanol oxidase; alcohol:oxygen oxidoreductase
Systematic name: alcohol:oxygen oxidoreductase (H2O2-forming)
Comments: The enzymes from the fungi Candida methanosorbosa and several Basidiomycetes species contain an FAD cofactor [1,3]. The enzyme from the phytopathogenic fungi Colletotrichum graminicola and Colletotrichum gloeosporioides utilize a mononuclear copper-radical mechanism [4]. The enzyme acts on primary alcohols and unsaturated alcohols, and has much lower activity with branched-chain and secondary alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-63-6
References:
1.  Janssen, F.W. and Ruelius, H.W. Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. Biochim. Biophys. Acta 151 (1968) 330–342. [DOI] [PMID: 5636370]
2.  Nishida, A., Ishihara, T. and Hiroi, T. Studies on enzymes related to lignan biodegradation. Baiomasu Henkan Keikaku Kenkyu Hokoku (1987) 38–59. (in Japanese)
3.  Suye, S. Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003. Curr. Microbiol. 34 (1997) 374–377. [PMID: 9142745]
4.  Yin, D.T., Urresti, S., Lafond, M., Johnston, E.M., Derikvand, F., Ciano, L., Berrin, J.G., Henrissat, B., Walton, P.H., Davies, G.J. and Brumer, H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat. Commun. 6:10197 (2015). [DOI] [PMID: 26680532]
[EC 1.1.3.13 created 1972]
 
 
EC 2.8.2.2     Relevance: 31.7%
Accepted name: alcohol sulfotransferase
Reaction: 3′-phosphoadenylyl sulfate + an alcohol = adenosine 3′,5′-bisphosphate + an alkyl sulfate
Glossary: 3′-phosphoadenylyl sulfate = PAPS
Other name(s): hydroxysteroid sulfotransferase; 3β-hydroxy steroid sulfotransferase; Δ5-3β-hydroxysteroid sulfokinase; 3-hydroxysteroid sulfotransferase; HST; 5α-androstenol sulfotransferase; cholesterol sulfotransferase; dehydroepiandrosterone sulfotransferase; estrogen sulfokinase; estrogen sulfotransferase; steroid alcohol sulfotransferase; steroid sulfokinase; steroid sulfotransferase; sterol sulfokinase; sterol sulfotransferase; alcohol/hydroxysteroid sulfotransferase; 3β-hydroxysteroid sulfotransferase; 3′-phosphoadenylyl-sulfate:alcohol sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:alcohol sulfonotransferase
Comments: Primary and secondary alcohols, including aliphatic alcohols, ascorbic acid, chloramphenicol, ephedrine and hydroxysteroids, but not phenolic steroids, can act as acceptors (cf. EC 2.8.2.15 steroid sulfotransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-76-2
References:
1.  Lyon, E.S. and Jakoby, W.B. The identity of alcohol sulfotransferases with hydroxysteroid sulfotransferases. Arch. Biochem. Biophys. 202 (1980) 474–481. [DOI] [PMID: 6935986]
2.  Lyon, E.S., Marcus, C.J., Wang, J.-L. and Jakoby, W.B. Hydroxysteroid sulfotransferase. Methods Enzymol. 77 (1981) 206–213. [PMID: 6173569]
[EC 2.8.2.2 created 1961, modified 1980]
 
 
EC 1.1.2.8     Relevance: 31%
Accepted name: alcohol dehydrogenase (cytochrome c)
Reaction: a primary alcohol + 2 ferricytochrome c = an aldehyde + 2 ferrocytochrome c + 2 H+
Other name(s): type I quinoprotein alcohol dehydrogenase; quinoprotein ethanol dehydrogenase
Systematic name: alcohol:cytochrome c oxidoreductase
Comments: A periplasmic PQQ-containing quinoprotein. Occurs in Pseudomonas and Rhodopseudomonas. The enzyme from Pseudomonas aeruginosa uses a specific inducible cytochrome c550 as electron acceptor. Acts on a wide range of primary and secondary alcohols, but not methanol. It has a homodimeric structure [contrasting with the heterotetrameric structure of EC 1.1.2.7, methanol dehydrogenase (cytochrome c)]. It is routinely assayed with phenazine methosulfate as electron acceptor. Activity is stimulated by ammonia or amines. Like all other quinoprotein alcohol dehydrogenases it has an 8-bladed ’propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rupp, M. and Gorisch, H. Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biol. Chem. Hoppe-Seyler 369 (1988) 431–439. [PMID: 3144289]
2.  Toyama, H., Fujii, A., Matsushita, K., Shinagawa, E., Ameyama, M. and Adachi, O. Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriol. 177 (1995) 2442–2450. [DOI] [PMID: 7730276]
3.  Schobert, M. and Gorisch, H. Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145 (1999) 471–481. [DOI] [PMID: 10075429]
4.  Keitel, T., Diehl, A., Knaute, T., Stezowski, J.J., Hohne, W. and Gorisch, H. X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J. Mol. Biol. 297 (2000) 961–974. [DOI] [PMID: 10736230]
5.  Kay, C.W., Mennenga, B., Gorisch, H. and Bittl, R. Characterisation of the PQQ cofactor radical in quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa by electron paramagnetic resonance spectroscopy. FEBS Lett. 564 (2004) 69–72. [DOI] [PMID: 15094044]
6.  Mennenga, B., Kay, C.W. and Gorisch, H. Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c550. Arch. Microbiol. 191 (2009) 361–367. [DOI] [PMID: 19224199]
[EC 1.1.2.8 created 1972 as EC 1.1.99.8, modified 1982, part transferred 2010 to EC 1.1.2.8]
 
 
EC 1.1.99.36     Relevance: 30.9%
Accepted name: alcohol dehydrogenase (nicotinoprotein)
Reaction: ethanol + acceptor = acetaldehyde + reduced acceptor
Other name(s): NDMA-dependent alcohol dehydrogenase; nicotinoprotein alcohol dehydrogenase; np-ADH; ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: ethanol:acceptor oxidoreductase
Comments: Contains Zn2+. Nicotinoprotein alcohol dehydrogenases are unique medium-chain dehydrogenases/reductases (MDR) alcohol dehydrogenases that have a tightly bound NAD+/NADH cofactor that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this function in vitro. The enzyme from the Gram-positive bacterium Amycolatopsis methanolica can accept many primary alcohols as substrates, including benzylalcohol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Ophem, P.W., Van Beeumen, J. and Duine, J.A. Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur. J. Biochem. 212 (1993) 819–826. [DOI] [PMID: 8385013]
2.  Piersma, S.R., Visser, A.J., de Vries, S. and Duine, J.A. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Biochemistry 37 (1998) 3068–3077. [DOI] [PMID: 9485460]
3.  Schenkels, P. and Duine, J.A. Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146 (2000) 775–785. [DOI] [PMID: 10784035]
4.  Piersma, S.R., Norin, A., de Vries, S., Jornvall, H. and Duine, J.A. Inhibition of nicotinoprotein (NAD+-containing) alcohol dehydrogenase by trans-4-(N,N-dimethylamino)-cinnamaldehyde binding to the active site. J. Protein Chem. 22 (2003) 457–461. [PMID: 14690248]
5.  Norin, A., Piersma, S.R., Duine, J.A. and Jornvall, H. Nicotinoprotein (NAD+ -containing) alcohol dehydrogenase: structural relationships and functional interpretations. Cell. Mol. Life Sci. 60 (2003) 999–1006. [DOI] [PMID: 12827287]
[EC 1.1.99.36 created 2010]
 
 
EC 2.5.1.26     Relevance: 30.8%
Accepted name: alkylglycerone-phosphate synthase
Reaction: 1-acyl-glycerone 3-phosphate + a long-chain alcohol = an alkyl-glycerone 3-phosphate + a long-chain acid anion
Glossary: a long-chain alcohol = an alcohol derived from a fatty acid with an aliphatic chain of 13-22 carbons.
Other name(s): alkyldihydroxyacetonephosphate synthase; alkyldihydroxyacetone phosphate synthetase; alkyl DHAP synthetase; alkyl-DHAP; dihydroxyacetone-phosphate acyltransferase (ambiguous); DHAP-AT
Systematic name: 1-acyl-glycerone-3-phosphate:long-chain-alcohol O-3-phospho-2-oxopropanyltransferase
Comments: The ester-linked fatty acid of the substrate is cleaved and replaced by a long-chain alcohol in an ether linkage.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 64060-42-0, 102484-74-2
References:
1.  Brown, A.J. and Snyder, F. Alkyldihydroxyacetone-P synthase. Solubilization, partial purification, new assay method, and evidence for a ping-pong mechanism. J. Biol. Chem. 257 (1982) 8835–8839. [PMID: 7096336]
2.  Wykle, R.L., Piantadosi, C. and Snyder, F. The role of acyldihydroxyacetone phosphate, reduced nicotinamide adenine dinucleotide, and reduced nicotinamide adenine dinucleotide phosphate in the biosynthesis of O-alkyl glycerolipids by microsomal enzymes of Ehrlich ascites tumor. J. Biol. Chem. 247 (1972) 2944–2948. [PMID: 4401994]
[EC 2.5.1.26 created 1984]
 
 
EC 2.3.1.224     Relevance: 29.1%
Accepted name: acetyl-CoA-benzylalcohol acetyltransferase
Reaction: (1) acetyl-CoA + benzyl alcohol = CoA + benzyl acetate
(2) acetyl-CoA + cinnamyl alcohol = CoA + cinnamyl acetate
Other name(s): BEAT
Systematic name: acetyl-CoA:benzylalcohol O-acetyltransferase
Comments: The enzyme is found in flowers like Clarkia breweri, where it is important for floral scent production. Unlike EC 2.3.1.84, alcohol O-acetyltransferase, this enzyme is active with alcohols that contain a benzyl ring.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dudareva, N., D'Auria, J.C., Nam, K.H., Raguso, R.A. and Pichersky, E. Acetyl-CoA:benzylalcohol acetyltransferase - an enzyme involved in floral scent production in Clarkia breweri. Plant J. 14 (1998) 297–304. [DOI] [PMID: 9628024]
[EC 2.3.1.224 created 2013]
 
 
EC 2.3.1.75     Relevance: 28.8%
Accepted name: long-chain-alcohol O-fatty-acyltransferase
Reaction: acyl-CoA + a long-chain alcohol = CoA + a long-chain ester
Other name(s): wax synthase; wax-ester synthase
Systematic name: acyl-CoA:long-chain-alcohol O-acyltransferase
Comments: Transfers saturated or unsaturated acyl residues of chain-length C18 to C20 to long-chain alcohols, forming waxes. The best acceptor is cis-icos-11-en-1-ol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 64060-40-8
References:
1.  Wu, X.-Y., Moreau, R.A. and Stumpf, P.K. Studies of biosynthesis of waxes by developing jojoba seed. 3. Biosynthesis of wax esters from acyl-CoA and long-chain alcohols. Lipids 16 (1981) 897–902.
[EC 2.3.1.75 created 1984]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald